Soal-Pembahasan Persamaan Garis Singgung Fungsi Trigonometri Topik Bahasan fungsi , trigonometri , turunan Tentukan Persamaan garis singgung y = cot2x â 4cotx â 3 y = c o t 2 x â 4 c o t x â 3 dengan absis Ď 4 Ď 4 Pembahasan: Rumus Persamaan garis y ây1 = m(x âx1). Sementaraitukitabelumpunya y â y 1 = m ( x â x 1).
Turunan Implisit. Persamaan yang dapat dituliskan dalam bentuk y = f (x) disebut persamaan fungsi eksplisit. Sebagai contohnya yaitu y=3x²+5x-7;y=x²+ sin x. Tidak semua fungsi dapat dituliskan dalam bentuk eksplisit. Contohnya seperti berikut ini: cos (x+y)+â (xy²)-5x=0; y+cos (xy²)+3x² =5y²-6. Secara umum, fungsi f (x,y) = c, dengan clangkah-langkah menentukan persamaan garis singgung grafik fungsi trigonometri yaitu : (1) Tentukan nilai ( x1 , y1 ) atau f(a), dengan cara mensubtitusi x = a ke fungsi f(x), sehingga diperoleh titik singgung (a, f(a). (2) Tentukan turunan pertama fungsi f(x) yaitu f ' (x). (3) Tentukan kemiringan garis singgung
Tentukan persamaan garis normal pada kurva fungsi trigonometri di bawah ini di titik yang diberikan. $h(\theta) = \theta + \sin \theta$ di titik yang berordinat $0.$ $f(x) = x \cos x$ di titik yang berabsis $x = \dfrac{\pi}{3}.$Menentukan persamaan garis singgung di titik A dan B pada parabola, Turunan fungsi : $ y = x^2 + 2x + 1 \rightarrow f^\prime (x) = 2x + 2 $ Titik A(0,1), gradien : $ m = f^\prime (0) = 2.0 + 2 = 2 $ PGS : $ y - y_1 = m(x-x_2) \rightarrow y - 1 = 2(x - 0) \rightarrow y = 2x + 1 $ Titik B($ -1,0$), gradien : $ m = f^\prime (-1) = 2.(-1) + 2 = 0 $
BCMkbWt.